skip to main content


Search for: All records

Creators/Authors contains: "Nocerino, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Underwater photogrammetry is a well-established technique for measuring and modelling the subaquatic environment in fields ranging from archaeology to marine ecology. While for simple tasks the acquisition and processing of images have become straightforward, applications requiring relative accuracy better then 1:1000 are still considered challenging. This study focuses on the metric evaluation of different off-the-shelf camera systems for making high resolution and high accuracy measurements of coral reefs monitoring through time, where the variations to be measured are in the range of a few centimeters per year. High quality and low-cost systems (reflex and mirrorless vs action cameras, i.e. GoPro) with multiple lenses (prime and zoom), different fields of views (from fisheye to moderate wide angle), pressure housing materials and lens ports (dome and flat) are compared. Tests are repeated at different camera to object distances to investigate distance dependent induced errors and assess the accuracy of the photogrammetrically derived models. An extensive statistical analysis of the different systems is performed and comparisons against reference control point measured through a high precision underwater geodetic network are reported.

     
    more » « less
  2. Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/). 
    more » « less